Stable Isotopes Suggest Low Site Fidelity in Bar-headed Geese (Anser indicus) in Mongolia: Implications for Disease Transmission.

نویسندگان

  • Eli S Bridge
  • Jeffrey F Kelly
  • Xiangming Xiao
  • Nyambayar Batbayar
  • Tseveenmyadag Natsagdorj
  • Nichola J Hill
  • John Y Takekawa
  • Lucy A Hawkes
  • Charles M Bishop
  • Patrick J Butler
  • Scott H Newman
چکیده

Population connectivity is an important consideration in studies of disease transmission and biological conservation, especially with regard to migratory species. Determining how and when different subpopulations intermingle during different phases of the annual cycle can help identify important geographical regions or features as targets for conservation efforts and can help inform our understanding of continental-scale disease transmission. In this study, stable isotopes of hydrogen and carbon in contour feathers were used to assess the degree of molt-site fidelity among Bar-headed Geese (Anser indicus) captured in north-central Mongolia. Samples were collected from actively molting Bar-headed Geese (n = 61), and some individual samples included both a newly grown feather (still in sheath) and an old, worn feather from the bird's previous molt (n = 21). Although there was no difference in mean hydrogen isotope ratios for the old and new feathers, the isotopic variance in old feathers was approximately three times higher than that of the new feathers, which suggests that these birds use different and geographically distant molting locations from year to year. To further test this conclusion, online data and modeling tools from the isoMAP website were used to generate probability landscapes for the origin of each feather. Likely molting locations were much more widespread for old feathers than for new feathers, which supports the prospect of low molt-site fidelity. This finding indicates that population connectivity would be greater than expected based on data from a single annual cycle, and that disease spread can be rapid even in areas like Mongolia where Bar-headed Geese generally breed in small isolated groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altitude matters: differences in cardiovascular and respiratory responses to hypoxia in bar-headed geese reared at high and low altitudes.

Bar-headed geese (Anser indicus) fly at high altitudes during their migration across the Himalayas and Tibetan plateau. However, we know relatively little about whether rearing at high altitude (i.e. phenotypic plasticity) facilitates this impressive feat because most of what is known about their physiology comes from studies performed at sea level. To provide this information, a comprehensive ...

متن کامل

Metagenomic profiling of gut microbial communities in both wild and artificially reared Bar‐headed goose (Anser indicus)

Bar-headed goose (Anser indicus), a species endemic to Asia, has become one of the most popular species in recent years for rare bird breeding industries in several provinces of China. There has been no information on the gut metagenome configuration in both wild and artificially reared Bar-headed geese, even though the importance of gut microbiome in vertebrate nutrient and energy metabolism, ...

متن کامل

Heart rate and the rate of oxygen consumption of flying and walking barnacle geese (Branta leucopsis) and bar-headed geese (Anser indicus).

We tested the hypotheses that the relationship between heart rate (fH) and the rate of oxygen consumption ((O(2))) differs between walking and flying in geese and that fH and (O(2)) have a U-shaped relationship with flight speed. We trained barnacle geese Branta leucopsis (mean mass 2.1 kg) and bar-headed geese Anser indicus (mean mass 2.6 kg) to walk inside a respirometer on a treadmill and to...

متن کامل

High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose.

The bar-headed goose (Anser indicus) crosses the Himalaya twice a year at altitudes where oxygen (O2) levels are less than half those at sea level and temperatures are below -20°C. Although it has been known for over three decades that the major hemoglobin (Hb) component of bar-headed geese has an increased affinity for O2, enhancing O2 uptake, the effects of temperature and interactions betwee...

متن کامل

The trans-Himalayan flights of bar-headed geese (Anser indicus).

Birds that fly over mountain barriers must be capable of meeting the increased energetic cost of climbing in low-density air, even though less oxygen may be available to support their metabolism. This challenge is magnified by the reduction in maximum sustained climbing rates in large birds. Bar-headed geese (Anser indicus) make one of the highest and most iconic transmountain migrations in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Waterbirds

دوره 38 2  شماره 

صفحات  -

تاریخ انتشار 2015